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A boundary integral equation for the eigenmode of photonic crystal fibers is
formulated and numerically solved using the Nyström method. The real and
imaginary parts of the propagation constant, which are related to the disper-
sion and the confinement loss of fibers, are obtained using a secant method.
This formulation is very flexible to handle the fiber geometry, and therefore can
be applied to photonic crystal fibers with novel refractive index profile and hole
geometry.
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crystal fibers; photonic crystal.

1. INTRODUCTION

Photonic crystal fibers (PCF) consist of a periodic array of holes running
through the length of the fibers with defects in the lattice, which serve
as cores for light guiding. When the average refractive index in the clad-
ding is lower than that of the core, light is guided based on total internal
reflection [3]; whereas when the refractive index in the cladding is higher
than that of the core, light is guided based on constructive interference [8].
Thanks to its novel guiding mechanisms, which render a pyramid of inter-
esting properties and exciting potential applications, PCF has become one
of the most exciting topics in fiber optics [11, 14].
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Many simulation methods have been applied to study PCF, includ-
ing the beam propagation method [1, 12], the multipole method [18, 19],
the scattering matrix method [10] and the finite element method (FEM)
[15]. In this paper, we propose to study the guiding properties of PCF
using a boundary integral equation (BIE), which based on Huygen’s prin-
cipal and Green’s function. There are advantages of using BIE compared
to other methods: FEM requires discretization of the interior domain and
truncation of the exterior domain with triangular or rectangular elements,
while the multipole method is restricted to perfect circular domains. On
the other hand, BIE uses only the boundary, and therefore it can handle
almost arbitrary shapes and distribution of holes with a smaller number
of unknowns. Because a boundary condition at infinity is built into the
Green’s function, the Perfect Matching Layer [15] or the Artificial Bound-
ary Condition is not needed for the truncation of solution domains for the
BIE method. Another advantage of the BIE is that it can handle arbitrary
profiles of the refractive index of holes, which can be used to simulate the
tunability of PCF easily.

However, discretization of the integral operators in the BIE method
yields a full matrix, and the mode searching step is somewhat time con-
suming. The latter issue has been studied by Xiaoyan Wang et al. [17]. In
their approach, the Helmholtz equation is considered as a Poisson equa-
tion with a solution dependent body force term. This allows them to sep-
arate the wave number k from Green’s function, which reduces significantly
the mode searching time. However, because Green’s function is a natu-
ral logarithm function, their method can only handle the real part of the
propagation constant. The BIE method, on the other hand, can yield both
the real and imaginary parts of the propagation constant, thus providing
more complete information for modeling PCF.

The paper is organized as follows: In Section 2, the BIE is derived from
the Maxwell’s equation, and some numerical issues are stated in Section 3.
In Section 4, we apply the BIE method to obtain the propagation charac-
teristics of two types of PCFs to demonstrate the validity of this method.
Finally, Section 5 summarizes the current work and lays out the future direc-
tion of our research.

2. FORMULATION

The governing equation for PCF is the Maxwell’s equations. By
assuming time harmonic exp(−iωt) and z dependence exp(iβz) along the
fiber, the Maxwell’s equations can be reduced to a Helmholtz equation
with unknown complex propagation constant β, namely
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and k0 =2π/λ is the wave number in vacuum, j =1 denotes the exterior of
collection of holes and j=2 denotes the interior of holes. The z-dependence
in the assumption can be expanded out as

exp(iβz)= exp(i(α1 + iα2)z)= exp(iα1z) exp(−α2z). (4)

Then, Re(β)= α1 gives the propagation constant of the light along the
fiber and Im(β)= α2 > 0 gives the decay rate or the confinement loss of
the light. In the following, by using the Green’s function for the Helmholtz
equation and Green’s second identity, a BIE will be formulated for the
interior domain Dj and the exterior domain R2\ ∪N

j=1 Dj of the fiber
shown in Fig. 1.

Fig. 1. Photonic crystal fiber (a) optical image of portion of the cross section of a PCF with
empty holes. (b) Domain with notation. d denotes diameter of holes, Λ denotes the distance
between holes, Dj denotes the interior of j th hole, and D denotes exterior domain.
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2.1. Interior Domain

For any r̂ ∈Dj , both solution ψ and Green’s function Gj(r̂ − r)=
i
4H

(1)
0 (k2 | r̂ − r |) satisfy the Helmholtz equation with zero and −δ(r̂ − r)

right hand side, respectively

∆ψ(r̂)+k2
2ψ(r̂) = 0, (5)

∆Gj(r̂− r)+k2
2Gj(r̂− r) = −δ(r̂− r). (6)

Subtracting (6) ×ψ(r) from (5) ×Gj(r̂− r) and integrating over the domain
Dj yield

ψ(r̂)=
∫
Dj

Gj (r̂− r)∆ψ(r) dr−
∫
Dj

∆Gj(r̂− r)ψ(r) dr. (7)

Then, using Green’s second identity, (7) can be converted into boundary
integrals, namely

ψ(r̂)=
∫
∂Dj

Gj (r̂− r)∂ψ
∂n
(r) ds(r)−

∫
∂Dj

∂Gj

∂n
(r̂− r)ψ(r) ds(r). (8)

Because the solutions on the boundary are used to express the field away
the boundary, this representation can be regarded as Huygens principal.
This formula will be used to calculate the field points inside domain Dj
after solving the BIE. In order to arrive at the BIE, we will let r̂ approach
to r on the interface. For the term involve Gj itself, we can pass the limit
inside. However, the term ∂Gj/∂n will produce a singular contribution of
− 1

2ψ(r̂) due to Plemelj formula [13, 16]. Then, we have

ψ(r̂)=
∫
∂Dj

Gj (r̂− r)∂ψ
∂n

ds(r)+ 1
2
ψ(r̂)−

∫
∂Dj

∂Gj

∂n
(r̂− r)ψ(r) ds(r) (9)

and moving all the terms to the left hand side and multiplying by a factor
of two yield the BIE for the interior domain

ψ(r̂)+2
∫
∂Dj

∂Gj

∂n
(r̂− r)ψ(r) ds(r)−

∫
∂Dj

Gj (r̂− r)∂ψ
∂n

ds(r)=0. (10)

2.2. Exterior Domain

The formulation for the exterior domain is similar to the interior
domain case with two slight differences. The first difference is that when
applying Green’s second identity, the boundary will involve infinity. But,
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due to Sommerfeld radiation condition (2), the integral that involves the
infinity boundary will converge to zero. Thus, Green’s second identity can
be applied without any difficulty. The second difference is that when we
let r̂ approach to r on the boundary, the normal derivative term produces
1
2ψ(r̂). Now for r̂ ∈R2\D, we can derive the BIE from

ψ(r̂)=
∫
R2\D

G(r̂− r)∆ψ(r) dr−
∫
R2\D

∆G(r̂− r)ψ(r) dr. (11)

Then, again Green’s second identity yields

ψ(r̂)=−
∫
∂D

G(r̂− r)∂ψ
∂n

ds(r)+
∫
∂D

∂G

∂n
(r̂− r)ψ(r) ds(r), (12)

where G(r̂− r)= i
4H

(1)
0 (k1 | r̂− r |), D=∪N

j=1Dj , and ∂D=∪N
i=1∂Dj . Signs

are changed due to the direction of normal vectors, which points toward
the exterior domain. Finally, by letting r̂ go to r on the boundary, we have

ψ(r̂)−2
∫
∂D

∂G

∂n
(r̂− r)ψ(r) ds(r)+2

∫
∂D

G(r̂− r)∂ψ
∂n

ds(r)=0. (13)

2.3. Summary of Integral Operators

The integral with normal derivative of the Green’s function is called
a double layer potential and will be denoted as D while the integral with
Green’s function itself is called a single layer potential and will be denoted
as S.

Su =
∫
∂D

G(r̂− r)u(r) ds(r), (14)

Du =
∫
∂D

∂G

∂n
(r̂− r)u(r) ds(r), (15)

Sju =
∫
∂Dj

Gj (r̂− r)u(r) ds(r), (16)

Dju =
∫
∂Dj

∂Gj

∂n
(r̂− r)u(r) ds(r). (17)

Then, using integral operator notation, Eqs. (10) and (13) can be rewritten
in a matrix form

A(β)x=0, (18)
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where

A(β)=
(
I −2D 2S
I +2Dj −2Sj

)
, x=

(
u
∂u
∂n

)
. (19)

Since the kernels of the integral operators contain the unknown β, matrix
A is a function of β and a nontrivial solution of the Eq. (18), which can
be found by solving f (β)=|det (A(β))|= 0, will determine the eigenmode
of PCF. For the purpose of complex root searching, the secant method
is employed and each integral operator in the matrix is discretized using
Nyström method [6]. After β is found, matrix equation can be solved to
find solution on the boundary. Then, using the solution, the field points
at everywhere can be calculated using Eqs. (8) and (12).

3. NUMERICAL METHOD

In this section, the Nyström or quadrature method for the single and
double layer operators and mode searching method are presented. The
Nyström method starts by applying straightforward quadrature method
for the integral operators. As a consequence, all the matrix elements are
simple evaluations of Green’s function at the quadrature points. However,
the Galerkin type and collocation methods use simple or double integrals
as their matrix elements. Also the Nyström method is generally stable.
But, in the case of other methods, condition numbers could be disturbed
by a poor choice of the basis function [6].

3.1. Single Layer Potential (S)

As all the domains are circles with a radius a, we can let x(t) =
(a cos t, a sin t), 0 � t � 2π be the parametric representation of the circle.
With G(r̂− r)= i

4H
(1)
0 (k|r̂− r|) the single layer potential can be written as

Su=2
∫
∂D

G(r̂− r)∂ψ
∂n
(r)ds(r)=

∫ 2π

0
M(t, τ )

∂ψ

∂n
(τ)dτ, (20)

where

M(t, τ ) = ia

2
H
(1)
0 (kr(t, τ )), (21)

r(t, τ ) = 2a

∣∣∣∣sin(
τ − t

2
)

∣∣∣∣ . (22)

Since M has a logarithmic singularity when t= τ , it has to be extracted out
of M using the power series expansion for the second kind bessel function
with zeroth order Y0 [2], namely
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Therefore, M can be rewritten as

M(t, τ ) = ia
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Separating the natural logarithmic term yields

M(t, τ )= ln
(

4a2 sin2
(
t− τ

2

))
M1(t, τ )+M2(t, τ ), (30)

where

M1(t, τ ) = − a

2π
J0(kr(t, τ )), (31)
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Now M1(t, τ ) and M2(t, τ ) are both analytic and the diagonal term of
M2(t, τ ) can be obtained from (32) by setting τ = t

M2(t, t)= ia

2
− a

π
ln
k

2
−C a

π
. (34)

Finally, a quadrature rule can be used to discretize the integral

2
∫
∂D

G(r̂− r)∂ψ
∂n
ds=

∫ 2π

0
M(t, τ )

∂ψ

∂n
(τ)dτ (35)

=
∫ 2π

0

{
ln
(

4a2 sin2
(
t− τ

2

))
M1(t, τ )+M2(t, τ )

}
∂ψ

∂n
(τ)dτ (36)

=
∫ 2π

0

{
ln
(

4 sin2
(
t− τ

2

))
M1(t, τ )+ ln(a2)M1(t, τ )+M2(t, τ )

}

×∂ψ
∂n
(τ)dτ (37)

≈
2n−1∑
j=1

Rnj (t)M1(t, tj )
∂ψ

∂n
(tj )+ π

n

2n−1∑
j=0

{ln(a2)M1(t, tj )+M2(t, tj )}

×∂ψ
∂n
(tj ), (38)

where

Rnj (t)=−2π
n

n−1∑
m=1

1
m

cosm(t− tj )− π

n2
cosn(t− tj ), (39)

tj = πj

n
, j =0,1,2, . . . ,2n−1. (40)

We used special weight (39) for the natural logarithm part for the quadra-
ture [6]. For the remaining part, trapezoidal rules are used. Other method
for handling the singularities can be found in [7].

3.2. Double Layer Potential (D)

Double layer potential can be rewritten in a parametric form on a cir-
cular domain as

Du=2
∫
∂D

∂G

∂n
(r̂− r)ψ(r)ds(r)=

∫ 2π

0
L(t, τ )ψ(τ)dτ, (41)
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where

L(t, τ )=− ik
4
H
(1)
1 (kr(t, τ ))r(t, τ ). (42)

Again, similar calculation as for single layer potential

L(t, τ )= ln
(

4a2 sin2 t− τ
2

)
L1(t, τ )+L2(t, τ ), (43)

where

L1(t, τ ) = k

4π
J1(kr(t, τ ))r(t, τ ), (44)

L2(t, τ ) = L(t, τ )−L1(t, τ ) ln
(

4a2 sin2 t− τ
2

)
, (45)
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∣∣∣∣sin
(
τ − t

2

)∣∣∣∣ . (46)

Also, the diagonal term of L2 can be deduced from

lim
z→∞ zH

(1)
1 (z)= 2

iπ
. (47)

Thus,

L2(t, t)=− 1
2π
. (48)

Finally, we have

2
∫
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∂ψ
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=
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2

))
L1(t, τ )+ ln(a2)L1(t, τ )+L2(t, τ )

}

×∂ψ
∂n
(τ)dτ (51)

≈
2n−1∑
j=1

Rnj (t)L1(t, tj )
∂ψ

∂n
(tj )+ π

n

2n−1∑
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where

Rnj (t)=−2π
n

n−1∑
m=1

1
m

cosm(t− tj )− π

n2
cosn(t− tj ), (53)

tj = πj

n
, j =0,1,2, . . . ,2n−1. (54)

3.3. Mode Searching

Using the method described in previous section, operator equation
can be discretized into the matrix equation. The secant method [5] is
employed to find zeros of f (β) :=|det (A(β))|, namely

βi+1 =βi − f (βi)(βi −βi−1)

f (βi)−f (βi−1)
. (55)

In order to use secant method, we need a good initial guess to have
the numerical convergence. To determine the initial guess, we graphed the
determinant over certain ranges and approximated the local minima (See
the Fig. 2). The Range of the search can be determined by the refractive
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Fig. 2. Determinant of matrix on the complex plane n1 = 1.44, n2 = 1.8, d = 3.315µm,
λ=0.815µm, and Λ=5.64µm.
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index of the material used in the PCF. In the case of an air-silica fiber,
effective refractive index is less than the refractive index of silica and
greater than that of the air, and effective refractive index is less than the
lower refractive index in the case of a photonic bandgap fiber (PBF). The
main drawback of using the secant method is that a real initial guess will
only converge to a real number, although Müller method (another varia-
tion of the Newton method) can be used to find a complex root regardless
of the initial condition. Thus, in order to use secant method to find the
complex propagation constant β, initial guess must be a complex number.

4. NUMERICAL RESULTS

In this section we calculate the propagation characteristics of two
different PCFs using the BIE to validate our method. Unless otherwise
stated in the paper, the PCFs we used in our simulation contain only the
nearest layer of holes in order to minimize the computation time.

4.1. Air-silica Fiber

In an air-silica fiber, holes remain empty with refractive index equal
to one [3]. The average refractive index is therefore lower than that of the
core, and light is guided through total internal reflection. Figure 3 depicts
the intensity profile of the fundamental mode calculated at λ=1.5µm for
a PCF with d = 2.0µm and Λ= 3.0µm. Clearly a well-confined mode is
obtained. Figure 4 shows both the real and imaginary parts of the effec-
tive refractive index neff = β/k0 of the fundamental mode as a function
of propagation wavelength λ between 0.9 and 1.7µm for a PCF with d=
2.26µm and Λ = 4µm. As shown, the real part of neff decreases with
increasing wavelength, indicating the dispersion is dominated by material
response (silica). On the other hand, the imaginary part of neff increases
with increasing wavelengths, indicating the confinement becomes weaker as
more light penetrates through the holes, and therefore leaks out.

To address the effectiveness of light confinement in the core by the sur-
rounding holes, Fig. 5 shows the imaginary part of neff as a function of
number of layers of holes. As indicated, the imaginary part of neff decreases
exponentially with increasing number of layers of holes, suggesting that
more than one layer of holes is desired to reduce the confinement loss.

4.2. Photonic Bandgap Fiber

In a PBF, the average refractive index of the cladding is larger
than that of the core, which can be realized either by a large air core
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Fig. 3. Contour plot of intensity field with n1 = 1.45, n2 = 1.0, d = 2.0µm, λ= 1.5µm, and
Λ=3.0µm.

surrounded by a array of smaller air holes [8] or by filling the holes in air-
silica fibers with liquid whose refractive index is larger than that of the sil-
ica [4]. In this configuration, light is confined in the core when it falls into
the stop band of the cladding. Reference [1] shows, when the periodicity of
holes is much larger than the wavelength of light and the index contrast
between core and holes is large, the light confinement is achieved based
on so-called antiresonant reflecting optical waveguide (ARROW) model [9]
rather than the otherwise well-known Bragg resonance [8]. According to
the ARROW model, the light is confined in the core when it is reflected
off the Fabry–Perot resonator formed by the high-indexed holes. If the
wavelength of light matches the resonance condition of the Fabry–Perot
resonator [12]:

λm=
2d
√
n2

2 −n2
1

m+1/2
, m=1,2, . . . . (56)
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between dots for eye-guide purpose only.

then, light transmits through such resonators and hence leaks out of the
core. In this section, we apply the BIE method to calculate the prop-
agation characteristics of PBF where the ARROW model is applicable.
The PBF we used for the calculation has d = 3.315µm, Λ = 5.640µm,
and refractive index of silica n1 = 1.44. Figure 6 compares the wave-
length dependence of the real and imaginary parts of neff of PBFs for
refractive index of holes n2 = 1.7, 1.8, and 1.9, respectively. As shown,
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both the real and imaginary parts of neff exhibit peaks corresponding
to Fabry-Perot-type resonances. In addition to the resonances, the real
part of neff has a background that monotonically levels off as wavelength
increases, a trend consistent with the air-silica PCF (Figure 4(a)) and is a
consequence of material dispersion of silica. Similarly, the imaginary part
of neff has a baseline that monotonically increases as wavelength increases,
a trend consistent with the air-silica PCF (Figure 4(b)) and is a conse-
quence of weaker confinement at large wavelength.

Figure 7 summaries the resonance frequencies obtained from Fig. 6
by averaging the last point on the left of the resonance and the first point
on the right of the resonance. Also displayed is the theoretical curves
calculated from Eq. (56). Excellent agreement is obtained.

5. CONCLUSION

A BIE for PCF is formulated, which based on Huygen’s principal and
Green’s function. Due to the nature of its formulation, the BIE method can
handle almost arbitrary lattice configurations, such as shapes, locations, and
refractive index of holes. In this paper we have applied the BIE method to
calculate the real and imaginary parts of the propagation constant for both
air-silica fiber and PBF, and these results agree well with those obtained
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by other methods. We are applying this method to other more complicated
novel fiber structures such as hollow core PCF, Double-clad PCF.
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